Chapter 2 Reasoning and Proofs

- 2.1 Conditional Statements
- 2.2 Inductive and Deductive Reasoning
- 2.3 Postulates and Diagrams
- 2.4 Algebraic Reasoning
- 2.5 Proving Statements about Segments and Angles
- 2.6 Proving Geometric Relationships

2.5 - Proving Statements about Segments and Angles Vocabulary

Proof - a logical argument that uses deductive reasoning to prove a statement is true

Two-column proof - a numbered set of statements in one column and reasons in the second column

Statement	<u>Reason</u>
(1) statement	(1) reason
(2) statement	(2) reason
(3) statement	(3) reason

2.5 - Proving Statements about Segments and Angles Complete the proof:

Given T is the midpoint of \overline{SU} . Prove $x = 5$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
STATEMENTS	REASONS
1. T is the midpoint of \overline{SU} .	1
2. $\overline{ST} \cong \overline{TU}$	2. Definition of midpoint
3. $ST = TU$	3. Definition of congruent segments
4. $7x = 3x + 20$	4
5	5. Subtraction Property of Equality
6. $x = 5$	6

2.5 - Proving Statements about Segments and Angles Vocabulary

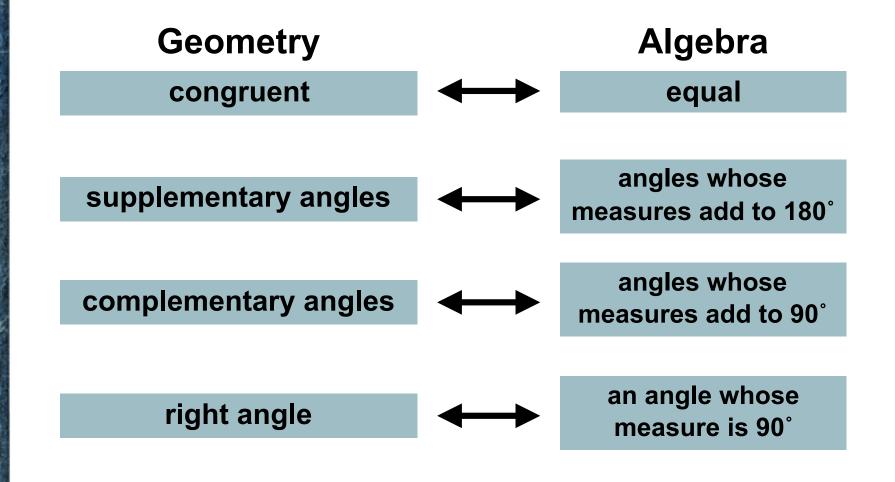

Definitions - used in a proof to go from algebra-togeometry and vice versa

Geometric Term	Algebraic Term
congruent segments $\overline{AB} \cong \overline{CD}$	segments of equal length $AB = CD$
supplementary angles	angles whose sum is 180°
complementary angles	angles whose sum is 90°

2.5 - Proving Statements about Segments and Angles

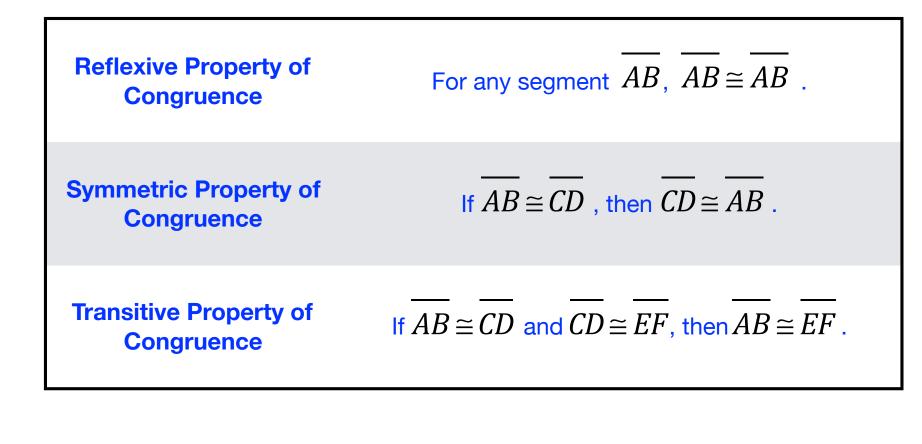
Vocabulary

Geometric Definitions


bisector -

a) a <u>line</u>, <u>segment</u>, or <u>ray</u> which divides a segment into two congruent segments, or

b) a line, segment, or ray which divides an angle into two congruent angles $\overline{EF} \cong \overline{FG}$ $\angle BAD \cong \angle DAC$


D

2.5 - Proving Statements about Segments and Angles Definitions

2.5 - Proving Statements about Segments and Angles

Geometric Properties of Congruence (POC)

2.5 - Proving Statements about Segments and Angles

Geometric Properties

Reflexive Property of Congruence

Symmetric Property of Congruence

Transitive Property of Congruence

Algebraic Properties

Addition Property of Equality

Subtraction Property of Equality

Multiplication Property of Equality

Division Property of Equality

Substitution Property of Equality

Distribution Property of Equality

Reflexive Property of Equality

Symmetric Property of Equality

Transitive Property of Equality

2.5 - Proving Statements about Segments and Angles Complete the proof:

Given *M* is the midpoint of \overline{AB} . **Prove** $AB = 2AM, AM = \frac{1}{2}AB$

<u>Statement</u>

